
Fast and Synchronous Crash Consistency

with Metadata Write Once File System

Yanqi Pan, Wen Xia, Yifeng Zhang, Xiangyu Zou, Hao Huang,
Zhenhua Li, Chentao Wu

Crash Consistency
Crash consistency is the fundamental demand for file systems
to ensure correct crash recovery for applications.

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 2

Database applications Network storage Storage for LLM

Synchronous Crash Consistency on PM
Low-latency persistent memory (PM) encourages file systems
to pursue synchronous crash consistency.

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 3

Block-based Devices
(e.g., HDD, SSD)

PM Devices
(e.g., Optane PM, MS-SSD)

OP 1 OP 2

Persist 1 Persist 2

OP 3 OP 1

PT 1

OP 2

PT 2

OP 3

PT 3

OP 4

PT 4

OP 5

PT 5

Synchronous Crash Consistency
(for PM File Systems)

Traditional Async Crash Consistency
(for Block-based File Systems)

Synchronous Crash Consistency on PM
Low-latency persistent memory (PM) encourages file systems
to pursue synchronous crash consistency.

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 4

Advantages

✓Avoid synchronization BUG
(e.g., Avoid misused fsync)

✓Reduce sync overhead
(e.g., NFS strict sync protocol)

PM Devices
(e.g., Optane PM, MS-SSD)

OP 1

PT 1

OP 2

PT 2

OP 3

PT 3

OP 4

PT 4

OP 5

PT 5

Synchronous Crash Consistency
(for PM File Systems)

PM File Systems
Numerous PM file systems adopt synchronous crash consistency

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 5

PM Devices PM Devices

Synchronous Crash Consistency: How?
Two traditional methodologies are used for PM file systems

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 6

Write OP

Data Meta 1
(Log Entry)

Meta 2
(Inode)

Without Additional Writes
(e.g., Log-structured File Systems: NOVA)

Write OP

Data Meta

With Additional Writes
(e.g., Journaling File Systems: PMFS)

TX
(Copy)

TX
CMT

PM Devices PM Devices

Synchronous Crash Consistency: How?
Two traditional methodologies are used for PM file systems

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 7

Write OP

Data Meta 1
(Log Entry)

Meta 2
(Inode)

Without Additional Writes
(e.g., Log-structured File Systems: NOVA)

Write OP

Data Meta

With Additional Writes
(e.g., Journaling File Systems: PMFS)

TX
(Copy)

TX
CMTDo they perform well atop PM?

Crash Consistency Overhead on PM (1/2)

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 8

0% 20% 40% 60% 80% 100%

LFS (NOVA)

JFS (PMFS)

Sequential 4 KiB Write
Data Write

TX (or Log Entry)

TX CMT (or Inode)

Other I/O (e.g., GC)

• Additional Writes: PMFS Journaling file system (JFS)
• No Additional Writes: NOVA Log-structured file system (LFS)
• Takeaways: Synchronous crash consistency overhead atop

PM dominates more than 75% overhead of I/O path

Synchronous Crash Consistency Overhead

Crash Consistency Overhead on PM (2/2)

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 9

0 500 1000 1500 2000

LFS (NOVA)

JFS (PMFS)

Sequential 4 KiB Write

• Upper bound: PM write BW is around 2.2 GiB/s in our machine
• Results: Existing synchronous crash consistency results in a

more than 50% PM bandwidth waste.
• Takeaways: Existing approaches do NOT suit well for PM.

More than 50% PM bandwidth waste

Upper PM bandwidth

Crash Consistency Overhead on PM (2/2)

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 10

0 500 1000 1500 2000

LFS (NOVA)

JFS (PMFS)

Sequential 4 KiB Write

• Upper bound: PM write BW is around 2.2 GiB/s in our machine
• Results: Existing synchronous crash consistency results in a

more than 50% PM bandwidth waste.
• Takeaways: Existing approaches do NOT suit well for PM.

More than 50% PM bandwidth waste

Upper PM bandwidth

Why such high overhead?

Deficiency Analysis

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 11

• Root cause: Many small, random,
and ordered metadata I/O

PM Devices

PM Devices

Data Meta 1
(Log Entry)

Meta 2
(Inode)

Data MetaTX
(Copy)

TX
CMT

Deficiency Analysis

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 12

• Root cause: Many small, random,
and ordered metadata I/O

• Small & Random: I/O amplification
due to PM’s coarse I/O granularity

PM Devices

PM Devices

Data Meta 1
(Log Entry)

Meta 2
(Inode)

Data MetaTX
(Copy)

TX
CMT

Small
(Area 1)

Small
(Area 1)

Small
(Area 2)

Small
(Area 1)

Small
(Area 2)

Deficiency Analysis

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 13

• Root cause: Many small, random,
and ordered metadata I/O

• Small & Random: I/O amplification
due to PM’s coarse I/O granularity

• Ordered: Waiting for previous data
transfer, limiting I/O concurrency

PM Devices

PM Devices

Data Meta 1
(Log Entry)

Meta 2
(Inode)

Data MetaTX
(Copy)

TX
CMT

WaitWaitWait

WaitWait

Small
(Area 1)

Small
(Area 1)

Small
(Area 2)

Small
(Area 1)

Small
(Area 2)

Deficiency Analysis

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 14

• Root cause: Many small, random,
and ordered metadata I/O

• Small & Random: I/O amplification
due to PM’s coarse I/O granularity

• Ordered: Waiting for previous data
transfer, limiting I/O concurrency

• Many: Further exacerbate the pre-
vious I/O overheads.PM Devices

PM Devices

Data Meta 1
(Log Entry)

Meta 2
(Inode)

Data MetaTX
(Copy)

TX
CMT

Small
(Area 1)

Small
(Area 1)

Small
(Area 2)

Small
(Area 1)

Small
(Area 2)

WaitWaitWait

WaitWait

M
an

y
M

an
y

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 15

Our Goal
A new crash consistency mechanism to

minimize metadata I/O and ordering points

Key Insight

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 16

Log Entry

Tail

Bitmap

Dentry
TX

Inode

Extent

Struggle to orchestrate I/O
for crash consistency

Legacy
Metadata
for an OP

Rethink metadata for the
optimal crash consistency

Write OP

Write
Package

Write
OP

Chmod
Meta

Chmod
OP

Rename
Package

Rename
OP

Trunc
Package

Trunc
OP

One package for one OP

Intuitive Example: Create

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 17

Create OP

Kernel

User

PM Devices

Return

② Persist Package

File

③ Manage Package

Metadata Write Once File System (WOFS)

Create
Package

① Generate Package

name

inode

Intuitive Example: Create

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 18

Create OP

Kernel

User

PM Devices

File

Return

Create
Package

① Generate Package

② Persist Package ③ Manage Package

See our paper (§4)

Metadata Write Once File System (WOFS)

Package Persistence (1/2)
• Where to persist a package?

• Rationale: Log is not a must; GC can be avoided

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 19

Package Persistence (1/2)
• Where to persist a package?

• Rationale: Log is not a must; GC can be avoided

• Our approach: Non-log layout, using free lists for allocation

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 20

PM Devices

Create
Package

Write
PackageFree Data

BlocksFree

FreeAllocate Free

Package Persistence (2/2)
• How to persist a package?

• Problem: The package can be large

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 21

PM Devices

Create
Package

Write
PackageFree Data

BlocksFree

Create
Package

Partial Write

256B

Package Persistence (2/2)
• How to persist a package?

• Problem: The package can be large

• Our approach: Protect package with checksum

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 22

PM Devices

Create
Package

Write
PackageFree Data

BlocksFree

Create
Package

Create
Package

Partial Write

① Protected by
checksum

② Written with
clwb+sfence

256B

Package Management (1/2)
• How to provide compatible services?

• Problem: Packages violate metadata objects

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 23

PM Devices

Inode Table

Easy to locate file

PM Devices

Locate file, How?

Create
Package

Create
PackageFree

Package Management (1/2)
• How to provide compatible services?

• Problem: Packages violate metadata objects

• Our approach: Package translation layer (PTL)

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 24

PM Devices

Create
Package

Write
Package

Data
Blocks

Create
Package

Write
Package

Inode Table Name Hierarchy

Dentry DentryInode
Attr

Inode
Attr

Data Index

Data
Ptr

Data
Ptr

Package Management (2/2)
• How to reclaim packages?

• Problem: Package can be invalidated

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 25

PM Devices

Create
Package FreeFreeFree

File

Unlink
Package

Package Management (2/2)
• How to reclaim packages?

• Problem: Package can be invalidated

• Our approach: Immediate package reclamation

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 26

PM Devices

Create
Package FreeFreeFree Unlink

Package

① Reason the causal dependency

Package Management (2/2)
• How to reclaim packages?

• Problem: Package can be invalidated

• Our approach: Immediate package reclamation

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 27

PM Devices

Free FreeFreeFree Unlink
Package

② Return to allocator (similar to call free())

WOFS Evaluation
• Experimental setup

• Implement WOFS in Linux kernel 5.1.0

• Intel Xeon Gold 5218 CPU @ 2.3GHz

• 256 GiB Optane DCPMM

• 128 GiB DRAM

• Competitors
• A number of existing PM file systems (e.g., NOVA, PMFS, SplitFS, etc.)

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 28

I/O Performance

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 29

0

0.5

1

1.5

2

2.5

1 2 4 8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 (

G
iB

/s
)

Total I/O Size (GiB)

Sequential Write (4 KiB per I/O)

0

0.5

1

1.5

2

2.5

0.25 0.5 1 2 4 8 12 16 20 24

Th
ro

ug
hp

ut
 (

G
iB

/s
)

Per I/O Size (KiB)

Sequential Write (1 GiB I/O)

• Setup: FIO with 1 GiB total I/O size, varying per I/O size
• Results: WOFS consistently outperforms competitors thanks to

the metadata write once scheme

WOFS NOVA PMFS SplitFS MadFS

I/O Performance

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 30

0

0.5

1

1.5

2

2.5

1 2 4 8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 (

G
iB

/s
)

Total I/O Size (GiB)

Sequential Write (4 KiB per I/O)

0

0.5

1

1.5

2

2.5

0.25 0.5 1 2 4 8 12 16 20 24

Th
ro

ug
hp

ut
 (

G
iB

/s
)

Per I/O Size (KiB)

Sequential Write (1 GiB I/O)

WOFS NOVA PMFS SplitFS MadFS

• Setup: FIO with 1 GiB total I/O size, varying per I/O size
• Results: WOFS consistently outperforms competitors thanks to

the metadata write once scheme
• Important NOTE: WOFS can reach PM bandwidth limits

PM BW
limits

I/O Performance

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 31

0

0.5

1

1.5

2

2.5

1 2 4 8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 (

G
iB

/s
)

Total I/O Size (GiB)

Sequential Write (4 KiB per I/O)

0

0.5

1

1.5

2

2.5

0.25 0.5 1 2 4 8 12 16 20 24

Th
ro

ug
hp

ut
 (

G
iB

/s
)

Per I/O Size (KiB)

Sequential Write (1 GiB I/O)

WOFS NOVA PMFS SplitFS MadFS

• Setup: FIO with 4 KiB per I/O, varying total I/O size
• Results: Similarly, WOFS outperforms competitors by more

than 50%, very close to upper bandwidth limits

PM BW
limits

I/O Performance

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 32

0

0.5

1

1.5

2

2.5

1 2 4 8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 (

G
iB

/s
)

Total I/O Size (GiB)

Sequential Write (4 KiB per I/O)

0

0.5

1

1.5

2

2.5

0.25 0.5 1 2 4 8 12 16 20 24

Th
ro

ug
hp

ut
 (

G
iB

/s
)

Per I/O Size (KiB)

Sequential Write (1 GiB I/O)

WOFS NOVA PMFS SplitFS MadFS

• Setup: FIO with 4 KiB per I/O, varying total I/O size
• Results: Similarly, WOFS outperforms competitors by more

than 50%, very close to upper bandwidth limits
• Important NOTE: WOFS shows a stable performance trend

Metadata Performance

• Setup: FxMark with five single-threaded workloads, including
data operation, dir traverse, file create/deletion, and rename

• Results: WOFS always shows the highest throughput as it
minimizes metadata I/O and ordering points.

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 33

0

0.5

1

DWTL MRPL MWCL MWUL MWRL

N
or

m
al

iz
ed

 T
pu

t WOFS NOVA PMFS SplitFS MadFS

V
FS

 e
ff

ic
ie

nc
y

Vs. Asynchronous Crash Consistency

• Setup: FIO with 4 KiB per I/O, no fsync issued
• Competitors with asynchronous crash consistency: HUNTER

and SoupFS both delay metadata writes to the background
• Results: WOFS still outperforms others, as latter’s background

flush interference with their foreground I/O performance
07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 34

0 500 1000 1500 2000

SoupFS

HUNTER

WOFS

Sequential 4 KiB Write

Other Results

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 35

• Other Results
• Concurrency and tail latency

• Real-world workload evaluation

• Recovery overhead

• Aging and fragmentation

• Performance beyond Optane DCPMM

• etc.

Please refer to our paper (§6)

Conclusion
• Analysis of synchronous crash consistency overhead atop PM

• Many small, random and ordered metadata I/O can be the bottleneck

• WOFS model to minimize crash consistency overhead
• Rethink file system metadata for optimal crash consistency
• Design a specific package as one metadata for a single operation
• Metadata write-once can minimize I/O and ordering points for crash consistency

• Make WOFS architecture practical and efficient
• Propose a range of techniques to manage packages efficiently
• Results. Outperform SOTA PM file systems, reaching upper PM bandwidth limits

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 36

Thanks & QAgithub.com/WOFS-for-PM/

https://github.com/WOFS-for-PM/
https://github.com/WOFS-for-PM/
https://github.com/WOFS-for-PM/
https://github.com/WOFS-for-PM/
https://github.com/WOFS-for-PM/

	默认节
	幻灯片 1: Fast and Synchronous Crash Consistency with Metadata Write Once File System

	Background
	幻灯片 2: Crash Consistency
	幻灯片 3: Synchronous Crash Consistency on PM
	幻灯片 4: Synchronous Crash Consistency on PM
	幻灯片 5: PM File Systems

	Motivation
	幻灯片 6: Synchronous Crash Consistency: How?
	幻灯片 7: Synchronous Crash Consistency: How?
	幻灯片 8: Crash Consistency Overhead on PM (1/2)
	幻灯片 9: Crash Consistency Overhead on PM (2/2)
	幻灯片 10: Crash Consistency Overhead on PM (2/2)
	幻灯片 11: Deficiency Analysis
	幻灯片 12: Deficiency Analysis
	幻灯片 13: Deficiency Analysis
	幻灯片 14: Deficiency Analysis

	Our insight
	幻灯片 15
	幻灯片 16: Key Insight
	幻灯片 17: Intuitive Example: Create
	幻灯片 18: Intuitive Example: Create
	幻灯片 19: Package Persistence (1/2)
	幻灯片 20: Package Persistence (1/2)
	幻灯片 21: Package Persistence (2/2)
	幻灯片 22: Package Persistence (2/2)
	幻灯片 23: Package Management (1/2)
	幻灯片 24: Package Management (1/2)
	幻灯片 25: Package Management (2/2)
	幻灯片 26: Package Management (2/2)
	幻灯片 27: Package Management (2/2)

	Evaluation
	幻灯片 28: WOFS Evaluation
	幻灯片 29: I/O Performance
	幻灯片 30: I/O Performance
	幻灯片 31: I/O Performance
	幻灯片 32: I/O Performance
	幻灯片 33: Metadata Performance
	幻灯片 34: Vs. Asynchronous Crash Consistency
	幻灯片 35: Other Results

	Conclusion
	幻灯片 36: Conclusion

