
Fast and Synchronous Crash Consistency 

with Metadata Write Once File System

Yanqi Pan, Wen Xia, Yifeng Zhang, Xiangyu Zou, Hao Huang, 
Zhenhua Li, Chentao Wu



Crash Consistency
Crash consistency is the fundamental demand for file systems 
to ensure correct crash recovery for applications.
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Synchronous Crash Consistency on PM
Low-latency persistent memory (PM) encourages file systems 
to pursue synchronous crash consistency.
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Synchronous Crash Consistency on PM
Low-latency persistent memory (PM) encourages file systems 
to pursue synchronous crash consistency.

07/09/25Fast and Synchronous Crash Consistency with Metadata Write Once File System 4

Advantages 

✓Avoid synchronization BUG 
(e.g., Avoid misused fsync)

✓Reduce sync overhead    
(e.g., NFS strict sync protocol)
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PM File Systems
Numerous PM file systems adopt synchronous crash consistency
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PM Devices PM Devices 

Synchronous Crash Consistency: How?
Two traditional methodologies are used for PM file systems
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PM Devices PM Devices 

Synchronous Crash Consistency: How?
Two traditional methodologies are used for PM file systems
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Crash Consistency Overhead on PM (1/2)
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• Additional Writes: PMFS Journaling file system (JFS)
• No Additional Writes: NOVA Log-structured file system (LFS)
• Takeaways: Synchronous crash consistency overhead atop 

PM dominates more than 75% overhead of I/O path

Synchronous Crash Consistency Overhead



Crash Consistency Overhead on PM (2/2)
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• Upper bound: PM write BW is around 2.2 GiB/s in our machine
• Results: Existing synchronous crash consistency results in a 

more than 50% PM bandwidth waste.
• Takeaways: Existing approaches do NOT suit well for PM.

More than 50% PM bandwidth waste

Upper PM bandwidth



Crash Consistency Overhead on PM (2/2)
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• Upper bound: PM write BW is around 2.2 GiB/s in our machine
• Results: Existing synchronous crash consistency results in a 

more than 50% PM bandwidth waste.
• Takeaways: Existing approaches do NOT suit well for PM.
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Why such high overhead?



Deficiency Analysis
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• Root cause: Many small, random, 
and ordered metadata I/O
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Deficiency Analysis
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• Root cause: Many small, random, 
and ordered metadata I/O

• Small & Random: I/O amplification 
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Deficiency Analysis
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• Root cause: Many small, random, 
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• Small & Random: I/O amplification 
due to PM’s coarse I/O granularity
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Deficiency Analysis
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• Root cause: Many small, random, 
and ordered metadata I/O

• Small & Random: I/O amplification 
due to PM’s coarse I/O granularity

• Ordered: Waiting for previous data 
transfer, limiting I/O concurrency

• Many: Further exacerbate the pre-
vious I/O overheads.PM Devices 
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Our Goal
A new crash consistency mechanism to 

minimize metadata I/O and ordering points



Key Insight
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Intuitive Example: Create 
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Intuitive Example: Create 
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Metadata Write Once File System (WOFS)



Package Persistence (1/2)
• Where to persist a package?

• Rationale: Log is not a must; GC can be avoided
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Package Persistence (1/2)
• Where to persist a package?

• Rationale: Log is not a must; GC can be avoided

• Our approach: Non-log layout, using free lists for allocation
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Package Persistence (2/2)
• How to persist a package?

• Problem: The package can be large
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Package Persistence (2/2)
• How to persist a package?

• Problem: The package can be large

• Our approach: Protect package with checksum
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Package Management (1/2)
• How to provide compatible services?

• Problem: Packages violate metadata objects
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Package Management (1/2)
• How to provide compatible services?

• Problem: Packages violate metadata objects

• Our approach: Package translation layer (PTL)
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Package Management (2/2)
• How to reclaim packages?

• Problem: Package can be invalidated
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Package Management (2/2)
• How to reclaim packages?

• Problem: Package can be invalidated

• Our approach: Immediate package reclamation
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Package Management (2/2)
• How to reclaim packages?

• Problem: Package can be invalidated

• Our approach: Immediate package reclamation
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WOFS Evaluation
• Experimental setup

• Implement WOFS in Linux kernel 5.1.0

• Intel Xeon Gold 5218 CPU @ 2.3GHz

• 256 GiB Optane DCPMM

• 128 GiB DRAM

• Competitors
• A number of existing PM file systems (e.g., NOVA, PMFS, SplitFS, etc.)
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I/O Performance
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• Setup: FIO with 1 GiB total I/O size, varying per I/O size
• Results: WOFS consistently outperforms competitors thanks to 

the metadata write once scheme

WOFS NOVA PMFS SplitFS MadFS



I/O Performance
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• Setup: FIO with 1 GiB total I/O size, varying per I/O size
• Results: WOFS consistently outperforms competitors thanks to 

the metadata write once scheme
• Important NOTE: WOFS can reach PM bandwidth limits

PM BW 
limits



I/O Performance
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• Setup: FIO with 4 KiB per I/O, varying total I/O size
• Results: Similarly, WOFS outperforms competitors by more 

than 50%, very close to upper bandwidth limits

PM BW 
limits



I/O Performance
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• Setup: FIO with 4 KiB per I/O, varying total I/O size
• Results: Similarly, WOFS outperforms competitors by more 

than 50%, very close to upper bandwidth limits
• Important NOTE: WOFS shows a stable performance trend



Metadata Performance

• Setup: FxMark with five single-threaded workloads, including 
data operation, dir traverse, file create/deletion, and rename

• Results: WOFS always shows the highest throughput as it 
minimizes metadata I/O and ordering points.
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Vs. Asynchronous Crash Consistency

• Setup: FIO with 4 KiB per I/O, no fsync issued
• Competitors with asynchronous crash consistency: HUNTER 

and SoupFS both delay metadata writes to the background
• Results: WOFS still outperforms others, as latter’s background 

flush interference with their foreground I/O performance
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Other Results
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• Other Results
• Concurrency and tail latency

• Real-world workload evaluation 

• Recovery overhead

• Aging and fragmentation

• Performance beyond Optane DCPMM

• etc.

Please refer to our paper (§6)



Conclusion
• Analysis of synchronous crash consistency overhead atop PM

• Many small, random and ordered metadata I/O can be the bottleneck

• WOFS model to minimize crash consistency overhead
• Rethink file system metadata for optimal crash consistency
• Design a specific package as one metadata for a single operation
• Metadata write-once can minimize I/O and ordering points for crash consistency

• Make WOFS architecture practical and efficient
• Propose a range of techniques to manage packages efficiently
• Results. Outperform SOTA PM file systems, reaching upper PM bandwidth limits
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Thanks & QAgithub.com/WOFS-for-PM/ 

https://github.com/WOFS-for-PM/
https://github.com/WOFS-for-PM/
https://github.com/WOFS-for-PM/
https://github.com/WOFS-for-PM/
https://github.com/WOFS-for-PM/
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